| 
   2.0.0b10 
   catchment modelling framework 
   | 
 
Describes the geometry of a closed pipe. More...
 Inheritance diagram for PipeReach:
 Collaboration diagram for PipeReach:Describes the geometry of a closed pipe.
Public Member Functions | |
| PipeReach (double l, double diameter) | |
| Creates a tube IChannel with diameter [m].  | |
| virtual double | A (double V) const | 
| Returns the area of the surface for a given volume.  | |
| virtual double | get_channel_width (double depth) const | 
| virtual double | get_depth (double area) const | 
| virtual double | get_flux_crossection (double depth) const | 
| double | get_length () const | 
| Length of the reach.  | |
| virtual double | get_wetted_perimeter (double depth) const | 
| virtual double | h (double V) const | 
| Returns the depth of a given volume.  | |
| virtual double | qManning (double A, double slope) const | 
| Calculates the flow rate from a given water volume in the reach.   | |
      
  | 
  virtual | 
\[w=2\sqrt{\left|r^2-(r-d)^2\right|} \]
Implements IChannel.
      
  | 
  virtual | 
\[d=r\left(1-\cos{\frac{A}{r^2}}\right) \]
Implements IChannel.
      
  | 
  virtual | 
\[A=r^2\arccos{\frac{r-d}{r}{r}} \]
Implements IChannel.
      
  | 
  virtual | 
\[P=r\arccos{\frac{r-d}{r}} \]
Implements IChannel.
      
  | 
  virtualinherited | 
Calculates the flow rate from a given water volume in the reach.
\begin{eqnarray*} q_{Manning}&=& A R^{\frac 2 3} \sqrt{\frac {\Delta_z} n} \\ A &=& \frac V l \mbox{, (Crosssectional area of the wetted crossection, Volume per length)} \\ R &=& \frac A {P(d)} \\ P(d) &=& \mbox{ the perimeter of the wetted crosssection, a function of reach depth} \\ d(V) &=& \mbox{ the depth of the reach a function of the volume} \\ \Delta_z &=& \frac{z_{max} - z_{min}}{l} \mbox{ Slope of the reach} \end{eqnarray*}
| A | The area of the cross section [m2] | 
| slope | The slope of the reach [m/m] |