2.0.0b10
catchment modelling framework
|
Describes the geometry of a closed pipe. More...
Describes the geometry of a closed pipe.
Public Member Functions | |
PipeReach (double l, double diameter) | |
Creates a tube IChannel with diameter [m]. | |
virtual double | A (double V) const |
Returns the area of the surface for a given volume. | |
virtual double | get_channel_width (double depth) const |
virtual double | get_depth (double area) const |
virtual double | get_flux_crossection (double depth) const |
double | get_length () const |
Length of the reach. | |
virtual double | get_wetted_perimeter (double depth) const |
virtual double | h (double V) const |
Returns the depth of a given volume. | |
virtual double | qManning (double A, double slope) const |
Calculates the flow rate from a given water volume in the reach. | |
|
virtual |
\[w=2\sqrt{\left|r^2-(r-d)^2\right|} \]
Implements IChannel.
|
virtual |
\[d=r\left(1-\cos{\frac{A}{r^2}}\right) \]
Implements IChannel.
|
virtual |
\[A=r^2\arccos{\frac{r-d}{r}{r}} \]
Implements IChannel.
|
virtual |
\[P=r\arccos{\frac{r-d}{r}} \]
Implements IChannel.
|
virtualinherited |
Calculates the flow rate from a given water volume in the reach.
\begin{eqnarray*} q_{Manning}&=& A R^{\frac 2 3} \sqrt{\frac {\Delta_z} n} \\ A &=& \frac V l \mbox{, (Crosssectional area of the wetted crossection, Volume per length)} \\ R &=& \frac A {P(d)} \\ P(d) &=& \mbox{ the perimeter of the wetted crosssection, a function of reach depth} \\ d(V) &=& \mbox{ the depth of the reach a function of the volume} \\ \Delta_z &=& \frac{z_{max} - z_{min}}{l} \mbox{ Slope of the reach} \end{eqnarray*}
A | The area of the cross section [m2] |
slope | The slope of the reach [m/m] |