2.0.0b10
catchment modelling framework
Loading...
Searching...
No Matches
PipeReach Class Reference

Describes the geometry of a closed pipe. More...

+ Inheritance diagram for PipeReach:
+ Collaboration diagram for PipeReach:

Detailed Description

Describes the geometry of a closed pipe.

Public Member Functions

 PipeReach (double l, double diameter)
 Creates a tube IChannel with diameter [m].
 
virtual double A (double V) const
 Returns the area of the surface for a given volume.
 
virtual double get_channel_width (double depth) const
 
virtual double get_depth (double area) const
 
virtual double get_flux_crossection (double depth) const
 
double get_length () const
 Length of the reach.
 
virtual double get_wetted_perimeter (double depth) const
 
virtual double h (double V) const
 Returns the depth of a given volume.
 
virtual double qManning (double A, double slope) const
 Calculates the flow rate from a given water volume in the reach.
 

Member Function Documentation

◆ get_channel_width()

virtual double get_channel_width ( double depth) const
virtual

\[w=2\sqrt{\left|r^2-(r-d)^2\right|} \]

Implements IChannel.

◆ get_depth()

virtual double get_depth ( double area) const
virtual

\[d=r\left(1-\cos{\frac{A}{r^2}}\right) \]

Implements IChannel.

◆ get_flux_crossection()

virtual double get_flux_crossection ( double depth) const
virtual

\[A=r^2\arccos{\frac{r-d}{r}{r}} \]

Implements IChannel.

◆ get_wetted_perimeter()

virtual double get_wetted_perimeter ( double depth) const
virtual

\[P=r\arccos{\frac{r-d}{r}} \]

Implements IChannel.

◆ qManning()

virtual double qManning ( double A,
double slope ) const
virtualinherited

Calculates the flow rate from a given water volume in the reach.

\begin{eqnarray*} q_{Manning}&=& A R^{\frac 2 3} \sqrt{\frac {\Delta_z} n} \\ A &=& \frac V l \mbox{, (Crosssectional area of the wetted crossection, Volume per length)} \\ R &=& \frac A {P(d)} \\ P(d) &=& \mbox{ the perimeter of the wetted crosssection, a function of reach depth} \\ d(V) &=& \mbox{ the depth of the reach a function of the volume} \\ \Delta_z &=& \frac{z_{max} - z_{min}}{l} \mbox{ Slope of the reach} \end{eqnarray*}

Returns
Flow rate [m3/s]
Parameters
AThe area of the cross section [m2]
slopeThe slope of the reach [m/m]