2.0.0b10
catchment modelling framework
|
Structure for the description of structural parameters of a reach Abstract base class for different IChannel geometries. More...
Structure for the description of structural parameters of a reach Abstract base class for different IChannel geometries.
Public Member Functions | |
virtual double | A (double V) const |
Returns the area of the surface for a given volume. | |
virtual double | get_channel_width (double depth) const =0 |
Calculates the flow width from a given actual depth [m] using the actual IChannel geometry. | |
virtual double | get_depth (double area) const =0 |
Calculates the actual depth of the reach using the IChannel geometry. | |
virtual double | get_flux_crossection (double depth) const =0 |
Calculates the wetted area from a given depth using the IChannel geometry. | |
virtual double | get_length () const =0 |
Length of the reach. | |
virtual double | get_wetted_perimeter (double depth) const =0 |
Calculates the wetted perimeter from a given actual depth [m] using the actual IChannel geometry. | |
virtual double | h (double V) const |
Returns the depth of a given volume. | |
virtual double | qManning (double A, double slope) const |
Calculates the flow rate from a given water volume in the reach. | |
|
pure virtual |
Calculates the actual depth of the reach using the IChannel geometry.
area | Wetted area of a river cross section [m2], can be obtained by V/l, where V is the stored volume and l is the reach length |
Implemented in CrossSectionReach, SWATReachType, TriangularReach, RectangularReach, PipeReach, Channel, and MeanChannel.
|
pure virtual |
Calculates the wetted area from a given depth using the IChannel geometry.
In most cases use get_flux_crossection=V/l, where V is the stored volume and l is the reach length
depth | depth of the reach [m] |
Implemented in CrossSectionReach, SWATReachType, TriangularReach, RectangularReach, PipeReach, Channel, and MeanChannel.
|
virtual |
Calculates the flow rate from a given water volume in the reach.
\begin{eqnarray*} q_{Manning}&=& A R^{\frac 2 3} \sqrt{\frac {\Delta_z} n} \\ A &=& \frac V l \mbox{, (Crosssectional area of the wetted crossection, Volume per length)} \\ R &=& \frac A {P(d)} \\ P(d) &=& \mbox{ the perimeter of the wetted crosssection, a function of reach depth} \\ d(V) &=& \mbox{ the depth of the reach a function of the volume} \\ \Delta_z &=& \frac{z_{max} - z_{min}}{l} \mbox{ Slope of the reach} \end{eqnarray*}
A | The area of the cross section [m2] |
slope | The slope of the reach [m/m] |