2.0.0b10
catchment modelling framework
|
Structure for the description of reaches with a triangular cross section. More...
Structure for the description of reaches with a triangular cross section.
Although double triangular cross section reach are rarely met, a triangular reach does scale with its water load, and is therefore preferable in case where nothing about IChannel geometry is known
Public Member Functions | |
TriangularReach (double l, double bankSlope=2) | |
Creates a new triangular reach type. | |
virtual double | A (double V) const |
Returns the area of the surface for a given volume. | |
virtual double | get_channel_width (double depth) const |
Returns the width of the stream at a given depth. | |
virtual double | get_depth (double area) const |
Returns the depth at a given crossection area. | |
virtual double | get_flux_crossection (double depth) const |
Returns the crossection area at a given depth. | |
double | get_length () const |
Length of the reach. | |
virtual double | get_wetted_perimeter (double depth) const |
Returns the wetted perimeter at a given depth. | |
virtual double | h (double V) const |
Returns the depth of a given volume. | |
virtual double | qManning (double A, double slope) const |
Calculates the flow rate from a given water volume in the reach. | |
Public Attributes | |
double | BankSlope |
Inverse slope of the bank \( \Delta = 0.5 \frac w d \). | |
|
virtual |
Returns the width of the stream at a given depth.
\begin{eqnarray*} w &=& 2 \Delta\ d \end{eqnarray*}
Implements IChannel.
|
virtual |
Returns the depth at a given crossection area.
\begin{eqnarray*} d &=& \sqrt{\frac{A}{\Delta}} \end{eqnarray*}
Implements IChannel.
|
virtual |
Returns the crossection area at a given depth.
\begin{eqnarray*} A &=& d^2 \Delta \end{eqnarray*}
Implements IChannel.
|
virtual |
Returns the wetted perimeter at a given depth.
\begin{eqnarray*} P &=& 2 d \sqrt{1+\Delta^2} \end{eqnarray*}
Implements IChannel.
|
virtualinherited |
Calculates the flow rate from a given water volume in the reach.
\begin{eqnarray*} q_{Manning}&=& A R^{\frac 2 3} \sqrt{\frac {\Delta_z} n} \\ A &=& \frac V l \mbox{, (Crosssectional area of the wetted crossection, Volume per length)} \\ R &=& \frac A {P(d)} \\ P(d) &=& \mbox{ the perimeter of the wetted crosssection, a function of reach depth} \\ d(V) &=& \mbox{ the depth of the reach a function of the volume} \\ \Delta_z &=& \frac{z_{max} - z_{min}}{l} \mbox{ Slope of the reach} \end{eqnarray*}
A | The area of the cross section [m2] |
slope | The slope of the reach [m/m] |