2.0.0b10
catchment modelling framework
|
Provides the use of the Van Genuchten - Mualem retention curve (Van Genuchten 1980) More...
Provides the use of the Van Genuchten - Mualem retention curve (Van Genuchten 1980)
Head - moisture relationship:
\begin{eqnarray*} W(\theta) &=& \frac{\theta - \theta_r}{\theta_s - \theta_r} \\ K(W) &=& K_{sat} \sqrt{W} \left(1-\left(1-W^{1/m}\right)^m\right)^2 \\ m &=& 1-\frac 1 n \\ \Psi(W) &=& 0.01 \frac{m}{cm} \frac{{\left(1-{W}^{\frac{1}{m}}\right) }^{\frac{1}{n}}}{\alpha\,{W}^{\frac{1}{m\,n}}} \\ W(\Psi) &=& \left(1+\left(\alpha\,100\frac{cm}{m}\Psi\right)^n\right)^{-m} \end{eqnarray*}
where:
Public Member Functions | |
VanGenuchtenMualem (real Ksat=15, real phi=0.5, real alpha=0.2178, real n=1.211, real m=-1, real theta_r=0.0, real w0=0.99) | |
Creates a van Genuchten-Mualem retention curve. | |
virtual real | Diffusivity (real wetness) const |
Returns the diffusivity of the soil according to its wetness as given by VanGenuchten 1980. | |
virtual real | dPsiM_dW (real wetness) const |
returns \(\tfrac{d\Psi_M}{dW}\) | |
virtual real | FillHeight (real lowerDepth, real Area, real Volume) const |
Returns the thickness of a soil column with a certain pore volume. | |
real | fit_w0 (real w1=1.01, real Psi_p=1.0, real tolerance=0.05) |
Fits the break point wetness w0, to ensure a specific oversaturation at a given hydrostatic potential. | |
virtual real | K (real wetness) const |
returns the conductivity of the soil at a given saturation | |
virtual real | MatricPotential (real wetness) const |
returns the matrix potential at a given saturation | |
virtual real | Porosity (real depth) const |
Returns the porosity at a certain depth. | |
virtual real | theta (real wetness) const |
returns the water content \(theta\) for a given wetness | |
virtual real | VoidVolume (real upperDepth, real lowerDepth, real Area) const |
Returns the void volume of a soil column. | |
virtual real | Wetness (real suction) const |
returns the saturation at a given suction (matrix potential). | |
virtual real | Wetness_eff (real wetness, real pF_r=4.2) const |
Returns the effective wetness, using a residual pF value. | |
real | Wetness_pF (real pF) const |
returns the volumetric water content at a given pF value | |
VanGenuchtenMualem | ( | real | Ksat = 15, |
real | phi = 0.5, | ||
real | alpha = 0.2178, | ||
real | n = 1.211, | ||
real | m = -1, | ||
real | theta_r = 0.0, | ||
real | w0 = 0.99 ) |
Creates a van Genuchten-Mualem retention curve.
Ksat | Saturated conductivity in \(\frac m{day}\) |
phi | Porosity in \(\frac{m^3 Pores}{m^3 Soil}\) |
alpha | Van Genuchten \(\alpha\) in \(\frac 1{cm}\) |
n | Van Genuchten n |
m | Van Genuchten m parameter, if negative m is calculated as \( 1-\frac 1 n\) |
theta_r | Water content for \(\lim\limits_{\Psi_M \rightarrow -\infty}{\theta(\Psi_M)}\) |
w0 | Wetness above the parabolic extrapolation is used instead of the Van Genuchten curve (usually calculated with fit_w0) |
|
virtual |
Returns the diffusivity of the soil according to its wetness as given by VanGenuchten 1980.
\[D(W) = K(W)\left|\frac{d\Psi}{d\theta}\right|\ eq. 10\]
where:
Applying Van Genuchten theory (Van Genuchten 1980) yields to:
\[D(W) = \frac{(1-m)K_{sat}}{\alpha m \Phi} W^{l-1/m}\left(\left(1-W^{1/m}\right)^{-m} + \left(1-W^{1/m}\right)^{m} -2\right)\]
where:
Reimplemented from RetentionCurve.
|
virtual |
returns \(\tfrac{d\Psi_M}{dW}\)
\[\frac{0.01 w^{\frac{1}{m}} w^{- \frac{1}{m n}} \left(- w^{\frac{1}{m}} + 1\right)^{\frac{1}{n}}}{\alpha m n w \left(- w^{\frac{1}{m}} + 1\right)} + \frac{0.01 w^{- \frac{1}{m n}} \left(- w^{\frac{1}{m}} + 1\right)^{\frac{1}{n}}}{\alpha m n w}\]
Reimplemented from RetentionCurve.
real fit_w0 | ( | real | w1 = 1.01, |
real | Psi_p = 1.0, | ||
real | tolerance = 0.05 ) |
Fits the break point wetness w0, to ensure a specific oversaturation at a given hydrostatic potential.
w1 | The oversaturation wetness to archieve (>1), default = 1.01 |
Psi_p | the hydrostatic potential for w1, default = +1.0 m |
tolerance |
|
virtual |
returns the conductivity of the soil at a given saturation
\[K(W) = K_{sat} \sqrt{W} \left(1-\left(1-W^{1/m}\right)^m\right)^2 \]
Reimplemented from RetentionCurve.
|
virtual |
returns the matrix potential at a given saturation
\[\Psi(W) = 0.01 \frac{m}{cm} \frac{{\left(1-{W}^{\frac{1}{m}}\right) }^{\frac{1}{n}}}{\alpha\,{W}^{\frac{1}{m\,n}}} \]
Reimplemented from RetentionCurve.
|
virtual |
returns the saturation at a given suction (matrix potential).
\[ W(\Psi) = \left(1+\left(\alpha\,100\frac{cm}{m}\Psi\right)^n\right)^{-m} \]
Reimplemented from RetentionCurve.
|
virtualinherited |
Returns the effective wetness, using a residual pF value.
\[w_{eff} = \frac{w_{act}-w\left(pF_r\right)}{1-w\left(pF_r\right)}\]