A wrapper for channel geometries. 
 | 
|   | Channel (char typecode, double length, double width=1., double depth=0.25) | 
|   | Creates a reachtype using a short cut character.  
  | 
|   | 
| 
  | Channel (const Channel &for_copy) | 
|   | Copy constructable. 
  | 
|   | 
| 
  | Channel (const IChannel &for_wrapping) | 
|   | Wraps an existing channel geometry. 
  | 
|   | 
| 
  | Channel (double length) | 
|   | Creates a triangular reach of a length. 
  | 
|   | 
| 
virtual double  | A (double V) const | 
|   | Returns the area of the surface for a given volume. 
  | 
|   | 
| 
double  | get_channel_width (double depth) const | 
|   | Calculates the flow width from a given actual depth [m] using the actual IChannel geometry. 
  | 
|   | 
| double  | get_depth (double area) const | 
|   | Calculates the actual depth of the reach using the IChannel geometry.  
  | 
|   | 
| double  | get_flux_crossection (double depth) const | 
|   | Calculates the wetted area from a given depth using the IChannel geometry.  
  | 
|   | 
| 
double  | get_length () const | 
|   | Length of the reach. 
  | 
|   | 
| 
double  | get_wetted_perimeter (double depth) const | 
|   | Calculates the wetted perimeter from a given actual depth [m] using the actual IChannel geometry. 
  | 
|   | 
| 
virtual double  | h (double V) const | 
|   | Returns the depth of a given volume. 
  | 
|   | 
| 
Channel &  | operator= (const Channel &for_assignment) | 
|   | Assignable. 
  | 
|   | 
| virtual double  | qManning (double A, double slope) const | 
|   | Calculates the flow rate from a given water volume in the reach.  
  | 
|   | 
  
  
      
        
          | virtual double qManning  | 
          ( | 
          double |           A,  | 
         
        
           | 
           | 
          double |           slope ) const | 
         
       
   | 
  
virtualinherited   | 
  
 
Calculates the flow rate from a given water volume in the reach. 
\begin{eqnarray*}
q_{Manning}&=& A R^{\frac 2 3} \sqrt{\frac {\Delta_z} n} \\
A &=& \frac V l \mbox{, (Crosssectional area of the wetted crossection, Volume per length)} \\
R &=& \frac A {P(d)} \\
P(d) &=& \mbox{ the perimeter of the wetted crosssection, a function of reach depth} \\
d(V) &=& \mbox{ the depth of the reach a function of the volume} \\
\Delta_z &=& \frac{z_{max} - z_{min}}{l} \mbox{ Slope of the reach}
\end{eqnarray*}
 - Returns
 - Flow rate [m3/s] 
 
- Parameters
 - 
  
    | A | The area of the cross section [m2]  | 
    | slope | The slope of the reach [m/m]  |